Formal Verification of Nonlinear Inequalities with Taylor Interval Approximations

نویسندگان

  • Alexey Solovyev
  • Thomas C. Hales
چکیده

We present a formal tool for verification of multivariate nonlinear inequalities. Our verification method is based on interval arithmetic with Taylor approximations. Our tool is implemented in the HOL Light proof assistant and it is capable to verify multivariate nonlinear polynomial and non-polynomial inequalities on rectangular domains. One of the main features of our work is an efficient implementation of the verification procedure which can prove non-trivial high-dimensional inequalities in several seconds. We developed the verification tool as a part of the Flyspeck project (a formal proof of the Kepler conjecture). The Flyspeck project includes about 1000 nonlinear inequalities. We successfully tested our method on more than 100 Flyspeck inequalities and estimated that the formal verification procedure is about 3000 times slower than an informal verification method implemented in C++. We also describe future work and prospective optimizations for our method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution for the risk of transmission of some novel coronavirus (2019-nCov) models by the Newton-Taylor polynomial solutions

In this paper we consider two type of mathematical models for the novel coronavirus (2019-nCov), which are in the form of a nonlinear differential equations system. In the first model the contact rate, , and transition rate of  symptomatic infected indeviduals to the quarantined infected class, , are constant. And in the second model these quantities are time dependent. These models are the...

متن کامل

Formal Verification of Medina's Sequence of Polynomials for Approximating Arctangent

The verification of many algorithms for calculating transcendental functions is based on polynomial approximations to these functions, often Taylor series approximations. However, computing and verifying approximations to the arctangent function are very challenging problems, in large part because the Taylor series converges very slowly to arctangent—a 57th-degree polynomial is needed to get th...

متن کامل

A Sequent Calculus for Integer Arithmetic with Counterexample Generation

We introduce a calculus for handling integer arithmetic in first-order logic. The method is tailored to Java program verification and meant to be used both as a supporting procedure and simplifier during interactive verification and as an automated tool for discharging (ground) proof obligations. There are four main components: a complete procedure for linear equations, a complete procedure for...

متن کامل

Study on multi-objective nonlinear programming in optimization of the rough interval constraints

This paper deals with multi- objective nonlinear programming problem having rough intervals in the constraints. The problem is approached by taking maximum value range and minimum value range inequalities as constraints conditions, reduces it into two classical multi-objective nonlinear programming problems, called lower and upper approximation problems.  All of the lower and upper approximatio...

متن کامل

On Tractable Approximations of Uncertain Linear Matrix Inequalities Affected by Interval Uncertainty

We present efficiently verifiable sufficient conditions for the validity of specific NPhard semi-infinite systems of linear matrix inequalities (LMIs) arising from LMIs with uncertain data and demonstrate that these conditions are “tight” up to an absolute constant factor. In particular, we prove that given an n × n interval matrix Uρ = {A | |Aij − Aij | ≤ ρCij}, one can build a computable lowe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013